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ABSTRACT
The rapid development of deep neural networks and generative
AI has catalyzed growth in realistic speech synthesis. While this
technology has great potential to improve lives, it also leads to
the emergence of “DeepFake” where synthesized speech can be
misused to deceive humans and machines for nefarious purposes.
In response to this evolving threat, there has been a significant
amount of interest in mitigating this threat by DeepFake detection.

Complementary to the existing work, we propose to take the pre-
ventative approach and introduce AntiFake, a defense mechanism
that relies on adversarial examples to prevent unauthorized speech
synthesis. To ensure the transferability to attackers’ unknown syn-
thesis models, an ensemble learning approach is adopted to improve
the generalizability of the optimization process. To validate the ef-
ficacy of the proposed system, we evaluated AntiFake against five
state-of-the-art synthesizers using real-world DeepFake speech
samples. The experiments indicated that AntiFake achieved over
95% protection rate even to unknown black-box models. We have
also conducted usability tests involving 24 human participants to
ensure the solution is accessible to diverse populations.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Security
and privacy→ Human and societal aspects of security and
privacy.
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1 INTRODUCTION
Speech synthesis, commonly known as Text-to-Speech (TTS), refers
to the generation of artificial human speech from textual input. Over
the years, this technology has played a pivotal role across a wide
spectrum of applications, ranging from accessibility aids for indi-
viduals with speech or hearing impairments to voice assistants in
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Figure 1: Overview of AntiFake.

smart devices. The recent advent of Deep Neural Networks (DNNs)
has further propelled growth in this field, leading to the emergence
of highly realistic synthesized speech known as “DeepFake” au-
dio. However, while these powerful systems have revolutionized
human-computer interaction and are designed to improve lives,
they also pose significant security risks due to their potential for
nefarious applications.
Real-world Threats of DeepFake. The use of DeepFake speech
in malicious attacks is not a distant possibility. It has been reported
that fraudsters used DeepFake techniques to impersonate a CEO’s
voice and successfully swindled more than $243,000 through a
phone call [48]. More recently in 2023, DeepFake audio has been
utilized to breach bank accounts by convincingly impersonating
account holders [15], as well as generate misinformation and hate
speech in the guise of influential celebrities’ voices [57, 66], re-
sulting in widespread negative societal impacts. These incidents
showed that contemporary speech synthesis techniques are already
capable of deceiving both digital authentication systems and human
auditory perception, highlighting the pressing need for effective
countermeasures.
Existing Defenses and Inherent Limitations. In response to
these newly emerged threats, existing research efforts have mostly
been dedicated to developing detection methods for defense. More
specifically, these approaches primarily focus on liveness detec-
tion [45, 47, 67] and acoustic signal analysis [3, 5], building upon
insights from physical properties of human vocal systems (e.g., vo-
cal cord vibrations [45] and articulatory gesture [67]), as well as
lower-dimensional signal features (e.g., MFCC and signal power
linearity degree [3]). Although these methods have demonstrated
remarkable success in uncovering synthetic audio as a post-attack
mitigation tool, AntiFake takes a departure from the existing line
of research and focuses on preventing the attack to build multiple
layers of defenses.
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AntiFake - A Complementary Defense Layer via Preventing
Unauthorized Synthesis. Motivated by this gap and the observa-
tion that the attacker has to rely on users’ voice samples to generate
DeepFake speech, we propose AntiFake to prevent unauthorized
speech synthesis using stealthy adversarial perturbations. AntiFake
takes a proactive approach, with the key idea of disrupting the syn-
thesis process by deviating speaker embeddings used for speaker
identity control in conditioned speech synthesis. Using AntiFake,
users or platforms can protect speech samples before sharing them
with the public. While the processed sample still sounds like the vic-
tim to humans, when it is used for speech synthesis by the attacker,
the resulting synthetic speech would resemble others’ voices rather
than the victim’s. Consequently, the generated DeepFake audio is
less likely to deceive humans or machines for nefarious purposes.
Technical Challenges of AntiFake. Designing AntiFake presents
four main technical challenges. First, we adhere to a practical set-
ting where the user with AntiFake is unaware of the exact model
employed by the attacker. Therefore, even black-box queries to
optimize effective perturbations become infeasible, requiring adver-
sarial examples to be transferrable to unknown models. To address
this issue, we build on an assumption that adversarial synthesis
models often have to share similarities with other robust encoders
for improved efficacy, and adopt ensemble learning to cause signifi-
cant deviations in those features. Intuitively, this approach ensures
that perturbed embedding is always closer to embeddings from
other speakers, compared to the original speaker. This principle
forms the foundation for the two optimization mechanisms, which
guide the exploration towards maximum embedding deviations.

Second, our investigation of state-of-the-art speech synthesizers
reveals that they often employ multiple audio segments to facili-
tate robust embedding extraction. This characteristic renders tradi-
tional methods of directly calculating final embeddings less effec-
tive, which can trap the optimization in local optima. To overcome
this problem, we employ a segment-based optimization strategy
and introduce a weighted segment loss adaptation mechanism. This
approach dynamically adjusts segment weights according to their
contributions, enabling more refined perturbation generation by
optimizing individual segments.

Third, it is crucial to maintain the perturbed audio samples’ qual-
ity to ensure usability and prevent arousing an attacker’s suspicion.
Traditional 𝐿𝑝 -based perturbation measurements are inadequate
due to the gap between 𝐿𝑝 distance and human auditory systems.
Therefore, we turn to human perception principles, specifically
frequency band sensitivity and masking effects. Building on psy-
choacoustic characteristics, we devise frequency penalties based
on inverse sound pressure levels and incorporate computationally
efficient SNR metrics to enhance imperceptibility.

Lastly, the primary goal of AntiFake to protect human percep-
tion necessitates human involvement in judging speaker identity
deviation, as no computational model perfectly models auditory
perception. However, using humans as iterative loss feedback is
impractical and can significantly undermine usability. To this end,
we design a human-in-the-loop workflow that minimally involves
humans in non-technical tasks (i.e., only rating the difference in
speaker identity) while maximizing the benefits of optimization.
To further balance the computational embedding deviation and

human judgment, we adapt the Analytic Hierarchy Process [54] to
comprehensively balance the two and make informative decisions.
Experiments and Findings. To enable a comprehensive evalu-
ation of AntiFake, we evaluated against five state-of-the-art syn-
thesizers including one commercial product (i.e., ElevenLabs [18]),
and three speaker verification systems including one commercial
platform (i.e., Microsoft Azure). Furthermore, to facilitate a more re-
alistic evaluation, we sourced real-world DeepFake sentences with
categorization based on malicious intents. Our evaluation starts
from a large-scale synthesis across diverse synthesizers, speakers,
utterances, and speech content. Out of 60,000 synthesized speech
samples, we filtered those that can bypass speaker verification sys-
tems and are perceptually similar to the victims’ voices to form a
set of high-fidelity DeepFake speech datasets. Built upon these, the
evaluation of AntiFake achieved > 95% protection rate, and the opti-
mized adversarial examples were shown transferrable to black-box
commercial models. To validate usability, we further conducted us-
ability tests based on the system usability scale (SUS) questionnaire,
involving 24 human participants with diverse backgrounds.
Contributions. Our proposed AntiFake not only enhances secu-
rity against DeepFake threats but also contributes to the ongoing
battle against the spread of misinformation and impersonation. Our
contributions are outlined as follows.

• We propose AntiFake, a proactive defense approach lever-
aging adversarial examples to disrupt unauthorized speech
synthesis, such that the synthesized DeepFake audio does not
resemble the victim’s voice to both humans and machines.

• We develop a human-in-the-loop workflow of AntiFake to
enable users to customize voices with minimal human effort.
To address the challenge of unknown attackers’ synthesiz-
ers, we adopt an ensemble learning approach on a set of
combined state-of-the-art encoder models.

• We evaluate AntiFake against five contemporary synthesiz-
ers including one commercial product, and three speaker
verification systems including one commercial platform. An-
tiFake achieves over 95% protection rate even against unseen
commercial synthesizers. We also conducted usability tests
involving 24 human participants.

2 BACKGROUND
Speech synthesis refers to the generation of human-like speech
audio through computational systems. Traditional speech synthesis
techniques, with origins tracing back to the 18th century, mainly
relied on rule-basedmethods such as formant synthesis and diphone
concatenation [36]. The recent advent of DNNs has revolutionized
this field, also known as “DeepFake”, with significantly improved
quality and the ability to synthesize speech in zero-shot settings (i.e.,
the target speaker is not involved in the training of the generative
models). As such, it further amplifies real-world threats where the
attacker can generate audio using merely a few seconds of audio
samples readily accessible on the Internet. In this study, we focus
on such contemporary DNN-based models, with their structure
summarized in Figure 2 and detailed in the following.
Preprocessing and Spectrogram Conversion. To ensure the
optimal quality of synthesized audio and effective extraction of
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Figure 2: The general workflow of DNN-based speech synthesis process.

speaker characteristics, typical audio pre-processing methods in-
clude resampling to obtain a consistent sample rate, normalizing
volume to establish a uniform loudness level, and trimming silence
in speech. The preprocessed audio waveform is subsequently trans-
formed into mel-spectrograms, a time-frequency representation
that effectively captures the essential features of the speech signal.
Speaker Embedding Encoding. The key component that charac-
terizes the efficacy of speech synthesis is the speaker embeddings
extracted via encoders. These embeddings capture the features re-
lated to speaker identity and generally possess a fixed length. For
effective synthesis, a major goal of the constructed embedding space
is to ensure that embeddings for the same speaker exhibit high sim-
ilarity irrespective of the content while maintaining a considerable
distance from embeddings of other speakers. Therefore, contempo-
rary systems often partition audio and associated mel-spectrograms
into smaller segments, thereby more accurately capturing the di-
verse phonetic and prosodic attributes of the speaker’s voice. As
such, this approach aims to address potential inaccuracies that may
arise from averaging various features across long time frames.
Conditional Synthesis with Textual Inputs. Similar to speaker
encoding, the speech content controlled by textual inputs is trans-
formed into linguistic features or phoneme-based representations.
Such encoded content together with speaker embedding will go
through DNN models to synthesize raw audio. After subsequent
postprocessing, this synthesis process conditioned on speaker em-
bedding will ultimately produce audio that closely mimics the target
speaker’s vocal characteristics with high fidelity.

3 RELATEDWORK
3.1 Adversarial Audio Examples
Adversarial examples have emerged as a significant threat to ma-
chine learning systems, with the seminal work of Goodfellow et
al. [20] revealing the vulnerability of image classification models to
subtle perturbations that lead to misclassification. Beyond images,
adversarial machine learning has since evolved and expanded to
audio-based machine learning systems, such as automatic speech
recognition and speaker identification [63]. Carlini et al. [7] in-
troduced the hidden voice command attack where the obfuscated
audio piece can be deciphered as commands by machines while
remaining unintelligible to humans. Yuan et al. [65] investigated
DNN-based speech recognition models, and devised perturbations
embedded within musical compositions to convey malicious com-
mands. Moreover, Carlini et al. [8] focused on clean speech, and
proposed a white-box attack using gradient descent on the CTC
loss. Subsequent advancements in the field include Metamorph [11],

which achieved over-the-air delivery of adversarial audio by in-
corporating channel impulse responses and frequency responses.
Schönherr et al. [42] improved attack stealthiness by incorporat-
ing a psychoacoustic model, while Abdullah et al. [1] improved
attack generalizability by exploiting the model-agnostic audio pre-
processing stage. On the other hand, [10, 33, 34] explored adversar-
ial attacks targeting speaker identification, with the optimization
objective of maximizing the confidence score of the target speaker.
Recently, Yu et al. [64] proposed semantic audio attacks against both
speech transcription and speaker recognition systems, where they
departed from 𝐿𝑝 -based perturbations and instead manipulated
prosody features to maximally retain speech quality and natural-
ness. While existing work primarily focuses on speech and speaker
recognition systems, the target of AntiFake is the speech synthesis
generative model that possesses completely different architectures,
which therefore requires new attack designs.

3.2 Adversarial Examples for Defense
Recent advances in machine learning also inadvertently empower
attackers to exploit DNN models for malicious intents, which in-
spired defenses that leverage adversarial examples for mitigation.
Within this context, Fawkes [43] was proposed as a poisoning-based
defense against unauthorized facial recognition that threatens peo-
ple’s privacy. By altering pixel values within facial regions, face
recognition models trained on such data will misidentify protected
users during inference. Following this work, Cherepanova et al. [12]
proposed an improved approach by formulating more practical set-
tings for face recognitionmodels and utilizing a larger dataset. More
recently, Glaze [44] is proposed to use adversarial perturbations to
hinder unauthorized text-to-image generation, aiming to protect
artists from style mimicry attacks. In the audio domain, Abdullah
et al. [2] proposed to disrupt speech and speaker recognition by
decomposing signals and filtering out non-essential components for
human comprehension. Another related work [26] conducted initial
explorations of compromising voice conversion models, however,
it faces several limitations within our context. First, their attack
was designed to target specific models, resulting in model-specific
adversarial examples. However, users cannot predict the exact mod-
els that attackers may employ, which therefore necessitates a new
mechanism generalizable to a variety of synthesis models to best
protect users. Second, contemporary speech synthesis models have
evolved with more advanced architectures and techniques (e.g.,
attention mechanism), which demand new attack strategies to en-
sure effectiveness. Third, [26] requires tunning parameters of the
attack algorithm, which poses challenges for users from diverse
backgrounds and restricts customizability. In our work, we intro-
duced a human-in-the-loop mechanism to automatically adjust the
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optimization process, striking a balance between audio quality and
protection strength based on user customizations. More details of
our designs are discussed in Section 5.

3.3 Defense against DeepFake Speech
The increasing threats brought by speech synthesis have inspired
several existing defenses, primarily focusing on DeepFake speech
detection. There are two main approaches: liveness detection based
on physical properties and signal analysis based on synthesis ar-
tifacts. More specifically, liveness detection methods leverage the
unique acoustic characteristics induced by the physical aspects of
human speech such as pop noise caused by human breadth [47],
articulatory gesture [67], or vibration of human vocal cords [45].
In contrast, signal analysis methods [3, 5] are designed to examine
acoustic signals and extract lower-dimensional features for classi-
fication, where the synthesis artifacts are generally captured and
therefore distinguish them from natural speech. Such features can
either be pure signal properties (such as MFCC and signal power
linearity degree) [3] or those associated with physical aspects such
as vocal tract structure [5]. While they exhibit remarkable perfor-
mance, all of these works aim at DeepFake audio detection deployed
after receiving suspicious speech audio on the user side. In contrast,
AntiFake targets the speech synthesis stage on the attacker side.
As such, AntiFake aims to prevent attackers from synthesizing con-
vincing audio in the first place, offering a complementary approach
to existing defenses and providing an additional layer of protection.

4 THREAT MODEL
4.1 Attacker Motivation and Assumptions
Attack Motivation. The attacker aims to synthesize DeepFake
speech that convincingly mimics the target speaker for a variety of
malicious purposes. We outline four motivations most commonly
seen in real-world scenarios, with the first three focused on deceiv-
ing humans and the last one on tricking machines.
(1) Conduct Financial Scam. Attackers may create DeepFake speech
to impersonate company officials, bank executives, or individuals
with a close relationship to the victim to conduct financial scams.
As a real-world motivating example, in 2019, the attacker used
DeepFake speech to impersonate the boss of a CEO, which led to
the scamming of $243,000 transferred to the attacker’s account [48].
(2) Compromise Safety and Privacy. By impersonating a trusted
individual such as a colleague or supervisor, attackers may trick
victims into taking unsafe measures or sending sensitive data (e.g.,
access tokens, passwords, personal identifiable information (PII)).
Such examples existed in the real world during the Covid-19 pan-
demic, where DeepFake speech has been used by attackers to apply
for remote positions that can access enterprise secrets such as PII,
financial data, and corporate IT databases [14].
(3) Spread Hate Speech or Misinformation. Distributing hate speech
or misinformation through DeepFake speech can have far-reaching
societal impacts. By attributing false information to influential indi-
viduals or organizations, attackers can manipulate public opinion,
sow discord, and exacerbate tensions. Recently in 2023, it was re-
ported that attackers cloned the voices of celebrities to spread neg-
ative content such as erotica, hate speech, and misinformation [57].

(4) Bypass Voice-based Authentication. Voice-based authentication
has been increasingly deployed in safety-critical systems, relying
on the unique characteristics of an individual’s voice to verify their
identity and grant access. However, the advanced DeepFake tech-
niques that are optimized for imitating those features can bypass
such authentication schemes. Such threats have been demonstrated
in a real-world case that happened in 2023, where an attacker man-
aged to break into a bank account using AI-synthesized voices [15].

Built upon the above intentions, we compiled a list of example
sentences sourced from the real world for synthesis in our experi-
ments, listed in Table 6 in the appendix.
Attacker Assumption. We assume the attacker is a third-party
entity without direct access (i.e., record speech physically) to the
target user’s speech samples. Instead, they will collect data from
public-domain resources, including but not limited to social media,
websites, and video streaming platforms. The attacker has moderate
computational resources that enable them to run existing speech
synthesizers, or alternatively train a newmodel (either from scratch
or fine-tune models) using publicly available speech data. Following
recent studies in DeepFake audio [5, 61], we assume the attacker
employs state-of-the-art synthesizers and uses the victim’s speech
samples to conduct zero-shot speech synthesis. Additionally, we
assume that adversarial models often have to share similarities with
other robust encoders for improved efficacy, which is reflected as
transferability and validated in ablation studies (Section 6.7).

4.2 System Goals and User Assumptions
User Objective and Assumptions. The ultimate objective of the
user is to share their speech audio online without inadvertently
helping attackers to synthesize DeepFake speech for malicious
purposes. To do so, users employ AntiFake to process audio prior
to publishing. AntiFake leverages adversarial optimization to add
subtle perturbations to the original audio to be shared, such that the
synthesized audio will not resemble their voice to both humans and
machines (i.e., voice-based authentication systems). In this study,
we assume that neither the user nor AntiFake has knowledge of
the specific synthesis model employed by attackers.
Primary System Goals of AntiFake. To best provide protection
to users with minimal changes to the original media, the key sys-
tem goals of AntiFake are two-fold. First, The speech synthesized
using the adversarial speech audio should produce speech audibly
different from the user. Second, The perturbations should be im-
perceptible to human perception, and the perturbed speech audio
should still sound natural and high-fidelity. The core technical de-
signs of AntiFake closely align with these objectives, which are
detailed in Section 5.

5 ANTIFAKE DESIGN
5.1 Overview and Technical Challenges
AntiFake is designed to align with the two system goals. The major
goal is to change the speaker identity of synthesized speech. As
discussed in Section 2, the fundamental objective of robust and
effective speech synthesis is to generate a convincing voice that
remains consistent regardless of the speech content. Due to this
reason, speech embeddings dominantly determine the voice identity
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by nature. Inspired by this principle, the key intuition of AntiFake is
to disrupt embedding space with perturbations added to the original
audio samples. It might appear straightforward to simply add high-
magnitude noises throughout the entire audio sample, which could
lead to a totally different speaker embedding. In this case, the user
is “perfectly” protected but the original audio is completely ruined.
As such, achieving the dual objectives of strong protection and
quality preservation requires a delicate balance in the optimization
of perturbations.

To achieve this, we proposed two optimization mechanisms inte-
grated in AntiFake. Specifically, the threshold-based approach aims
to deviate embedding away from the original speaker based on
thresholds, while the target-based method aims to shift embedding
close to a target speaker who is not the original speaker. These
two approaches are individually advantageous in different aspects,
which are further discussed in Section 5.4. But in both cases, the
synthesized audio will ideally sound like someone else with re-
spect to both humans and machines, thereby mitigating the threats
brought by DeepFake audio.

We summarize the technical challenges into four main aspects.
C1 - Synthesizer Employed by Attackers is Unknown. We
make a practical assumption that users are unaware of the exact
synthesizer utilized by the attacker, which is the key challenge
that requires generalizable perturbations that can transfer to an
unknown model. To solve this problem, we build on existing find-
ings [30] that robust encoders exhibit similarities in the extracted
characteristics and latent space boundaries (i.e., consistently project-
ing different speakers into distinct embedding areas while mapping
the same speaker to identical regions). As such, we reasonably hy-
pothesize that the embeddings from unknown encoders are different
when the corresponding speech samples are sufficiently different
in inherent acoustic properties. Therefore, we adopted an ensem-
ble learning approach, incorporating state-of-the-art encoders to
optimize perturbations generalizable across various synthesizers.
C2 - Handling Robust Embeddings Derived from Segments.
For robust speaker embedding extraction, state-of-the-art speech
synthesizers typically first generate partial embeddings from speech
segments and subsequently integrate them into a final embedding
(Section 2). To this end, our initial exploration revealed that directly
deviating the final embedding is susceptible to local optima, as the
impact of a partial embedding not close to the target is mitigated
by other partials that may have attained better optimal points.
To address this problem and improve effectiveness, we propose
a weighted segment-based raw embedding deviation technique
incorporating weighted loss calculation. This approach allows for
more fine-grained control and ensures that each partial embedding
contributes effectively to the overall perturbation.
C3 - Requirement on Stealthy Perturbations.Making pertur-
bations imperceptible is also a key requirement to ensure usability
and effectiveness. However, we found that 𝐿𝑝 -norms commonly em-
ployed by existing literature are less effective, and the resulting per-
turbations are still audible. To overcome this limitation, we exploit
the human auditory system’s diverse sensitivity to audio frequen-
cies, and penalize perturbations with nuanced per-frequency-band
gains inversely proportional to their sound pressure levels.

C4 - Difficulty of Obtaining Continuous Feedback from Hu-
mans. A primary objective of AntiFake is to protect human per-
ception against DeepFake speech. While there is no perfect model
that can replace the human auditory system, we design a human-in-
the-loop approach. However, obtaining continuous feedback from
humans during optimization is labor-intensive and can significantly
undermine usability. As such, how to minimize human efforts while
retaining effectiveness is a key challenge in designing the system.
To this end, we designed a process where the user is only asked to
subjectively judge the speaker identity dissimilarity of the speech
samples. In order to balance human judgment and computed em-
bedding deviation, we adopt Analytic Hierarchy Process (AHP) [54]
to comprehensively incorporate the two. The workflow involving
users in the loop is described in the following.

5.2 AntiFake with Human-in-the-loop
The protection objectives of AntiFake necessitate the involvement
of human efforts to validate deviations in speaker identity within
the synthesized audio. For usability, the designed process adheres
to two principles: first, tasks assigned to users must be accessible
to those with minimal prior knowledge, and second, human efforts
should be minimized while maximizing the benefits of optimization.
The overall workflow of AntiFake can be summarized as follows:
Stage #1 - Speech Upload and Embedding Extraction. The
initial step starts with users uploading the speech audio theywish to
protect. This audio is then pre-processed, and speaker embeddings
are extracted utilizing an ensemble of encoders. More details of
ensembled encoders are described in Section 5.5. Both the speech
audio and associated embedding are used for further analysis.
Stage #2 - Target Selection with Analytic Hierarchy Process.
In this step, AntiFake searches its database consisting of public
speech corpora such as VCTK [62] to identify potential targets. It
randomly selects five sentences each from a unique speaker. These
sentences are used to compute speaker embeddings, which are
ranked based on their distance from the original embedding of the
user’s uploaded speech. To further ensure that target speakers are
perceptibly different from the user, the user is prompted to listen
to these audio samples and rate the perceived identity dissimilarity
on a scale of 1 to 5, with 5 representing the highest dissimilarity
and 1 denoting the least. Due to the gap between embedding rep-
resentation and human auditory perception, conflicts may arise
between embedding-based rankings and human scores. To this end,
we model it as a multi-criteria decision-making problem and adopt
the Analytic Hierarchy Process to determine the appropriate target.
In our context, we model computational dissimilarity and human
scores as the decision-making criteria, and the five sentences are
the decision alternatives. In this way, our approach considers re-
lationships among candidate sentences through pairwise matrix
calculations and integrates human perception and embedding devi-
ations with the aggregated priority vectors. In the end, the target
sentence (and target speaker) is selected with the largest deviation
in both human perception and computational representations.
Stage #3 - Optimization and User Perceptual Validation. The
obtained speech audio and target sentence (which also derives the
threshold by calculating embedding distance) are subsequently used
for optimization as detailed in Section 5.4. The finalized perturbed
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speech audio is then used to synthesize speech and sent to the user
for listening tests as done in Step #2. If the resulting synthesized
speech does not sound sufficiently different from the user, the user is
provided with the opportunity to either proceed with optimization
or restart with automatically adjusted hyperparameters.

5.3 Formulating the Optimization Problem
We first define and formulate the problem as follows:

• xU: The original speech audio of the userSU to be protected.
• xT: The target speech audio of speaker ST .
• 𝛿xU The perturbations generated by AntiFake.
• 𝐺 (𝑡, 𝑥): The speech synthesis generative model that takes
speech 𝑥 and textual content 𝑡 .

• 𝑔(𝑥): The encoder model that extracts speaker embeddings
from the input audio 𝑥 .

• 𝐻 (𝑥): The human perception function that determines the
speaker identity with given speech 𝑥 .

• 𝑆𝑉 (𝑥): The speaker verification system that takes speech 𝑥 .
• 𝐷 (𝑧, 𝑧′ ): The distance function measuring the difference be-
tween two speaker embeddings 𝑧 and 𝑧

′
.

• 𝑀 (𝛿): The function measuring the perturbation magnitude
with respect to human perception.

Given the original speech audio xU, AntiFake aims to deviate
the speaker embedding away from the original one, formulated as:

maximize
𝛿xU

𝐷
(
𝑔(xU + 𝛿xU ), 𝑔(xU)

)
− 𝛼𝑀 (𝛿xU ), (1)

subject to 𝐻 (xU) ≈ 𝐻 (xU + 𝛿xU ) (2)
𝐻 (𝐺 (𝑡, xU)) ≠ 𝐻 (𝐺 (𝑡, xU + 𝛿xU )) (3)
𝑆𝑉 (𝐺 (𝑡, xU)) ≠ 𝑆𝑉 (𝐺 (𝑡, xU + 𝛿xU )) (4)

where 𝛼 is a positive hyperparameter that balances the impercepti-
bility of perturbations and the strength of the protection.

5.4 Two Schemes for Controlled Optimization
While the ultimate goal as indicated in Eq. 1 is to sufficiently deviate
the speaker embedding, however, it is not always the bigger the
deviation the better the effectiveness. For instance, in extreme cases,
the deviated embedding grows to abnormally high values, and
speech synthesis will completely fail (i.e., complete silence or pure
whistling noises) which can easily draw attention from the attacker.
As such, we consider it necessary to add reasonable control to the
deviation magnitude (i.e., protection strength). To achieve this goal,
we developed two mechanisms, one based on threshold and another
based on existing embeddings belonging to other speakers.
Threshold Based. The protection strength can be directly con-
trolled with a reasonable threshold, denoted as T . In this context,
we construct the loss function for embedding/identity shifting as:

Lidentity (𝛿) = ELU[T − 𝐷 (𝑔(xU + 𝛿xU), 𝑔(xU)) , 𝑎] (5)

where ELU(𝑥, 𝑎) =
{
𝑥, if 𝑥 > 0
𝑎(𝑒𝑥 − 1), if 𝑥 ≤ 0

The exponential linear unit (ELU) function is adopted to drive
the optimization process into encouraging the embedding deviation
towards the threshold. It offers two key advantages. First, it effec-
tively shrinks the difference between the threshold and embedding

deviation when the embedding difference is lower than T . The
protection strength reflected by T is only achieved when these two
are equal. Second, it tolerates embedding deviations beyond T , but
only to a limited extent controlled by the alpha parameter (𝑎 in
Eq. 5), which governs the negative saturation region of the function
and determines the slope of the function in the negative region.
Target Based. In addition to a predefined threshold for controlling
deviation magnitude (and the protection strength), an alternative
approach is to guide the optimization towards a known speaker
embedding with a completely different identity. A potential advan-
tage of this method is to better preserve the naturalness of the
deviated speaker embedding (since the target speaker exists) and
the resulting synthesized speech. In this case, the loss function is:

Lidentity (𝛿) = 𝐷 (𝑔(xU + 𝛿xU), 𝑔(xT)) , (6)

𝑠 .𝑡 .

{
xU ∈ SU , xT ∈ ST ,

SU ≠ ST ,

Note that the intention of introducing a target speaker is not to
enforce the synthesis into producing speech sounds like ST , which
is unnecessary in our context. Instead, it aims to guide the opti-
mization towards a more natural embedding and DeepFake speech.

The intuitive trade-off between the two schemes is that, the
threshold-based method allows for a larger solution space, pro-
viding more flexibility in the optimization process. However, the
resulting embedding is less controlled and may lead to artifacts
in the synthesized speech. In contrast, the target-based method
ensures more natural synthesis results by driving the optimiza-
tion toward an existing speaker embedding. However, targeting a
specific speaker actually introduces an additional constraint and
significantly narrows the solution space. In cases where such an op-
timal solution is hard to achieve, it is possible that the optimization
process may become stuck in local optima or require greater per-
turbations that degrade the original audio quality. Such trade-offs
are further experimentally studied in Section 6.

5.5 Improving Efficacy and Imperceptibility
Improve Robustness via Ensembled Encoders. The vast ma-
jority of adversarial audio examples are designed to target specific
text-to-speech or speaker recognition models [7, 8, 34, 64, 65]. Un-
der the context of AntiFake as a defense, however, the synthesis or
encoder model employed by the attacker is unknown, even unavail-
able to the users for black-box query. Such a knowledge gapmakes it
fundamentally challenging to develop perturbations that effectively
disrupt the diverse embedding spaces of unknown models.

However, regardless of the model structures and parameters, all
of them are designed to robustly extract unique acoustic features be-
longing to individual speakers. As such, we reasonably hypothesize
that as long as the inherent acoustic features in the speech audio
are sufficiently altered by the perturbations, the produced speaker
embedding will deviate from the original one, even in the case of an
unknown model. To ensure that the perturbations effectively alter
the speaker-specific features, we surveyed state-of-the-art speech
synthesis models and selected a total of 4 diverse encoders as sum-
marized in Table 1. The chosen encoders exhibit a range of diverse
properties, including different architectures from convolutional
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Table 1: Properties of the ensembled encoders.

Encoder Architecture # Layer Emb. Size Dataset / # Speaker
AdaIN [13] VAE 32 128 VCTK / 109
GE2E [59] LSTM 3 (768 cells) 256 Custom / 18000
H/ASP [23] ResNet 34 512 VoxCeleb 2 / 6000
ViT [17] Transformer 31 1024 Proprietary / -

Embed. Size = Embedding Size

models (e.g., ResNet) to sequential models (e.g., LSTM), varying
embedding sizes reflecting different levels of feature richness, and
distinct training data to cover a more comprehensive set of individ-
ual speakers. In this way, we aim to derive comprehensive feature
extraction to best benefit transferability across diverse synthesizers.

As the second step, we adopt an ensemble learning approach for
altering these features and the embedding space in a robust manner.
To achieve this, the loss values derived from individual encoders
are jointly backward to optimize perturbations on the speech audio.
With this approach, AntiFake ensures that the resulting adversarial
examples are more likely to be effective against a wide range of
unknown models employed by potential attackers.
Improve Effectiveness via Weighted Segment Loss Adapta-
tion. The state-of-the-art speech synthesizers are designed to gen-
erate the ultimate speaker embedding by combining partial embed-
dings derived from multiple audio segments. This process ensures
robust feature extraction and consequently better performance.
Due to this reason, directly calculating the distance between the
ultimate embeddings of the user and target as the optimization term
may appear intuitive, however, we found that this approach can
be less effective and prone to getting trapped in local optima. This
limitation arises because partial embeddings in suboptimal situa-
tions are counterbalanced by other segments that may have already
achieved optimal values. As a result, the entire embedding becomes
difficult to adjust further. To address this challenge, we propose an
inverse proportional loss adaptation scheme, which adaptively as-
signs weights to the loss terms of individual audio segments based
on their contributions. The adaptive weight is designed as:

W𝑖 =
[𝑑

(
𝑔(xU𝑖 + 𝛿𝑖 ), 𝑔(xU𝑖 )

)
+ 𝜖]−1∑𝐾

𝑘=1 1/[𝑑
(
𝑔(xU𝑘 + 𝛿𝑘 ), 𝑔(xU𝑘 )

)
+ 𝜖]

, (7)

whereW𝑖 is the weight corresponding to the 𝑖-th audio segment
xU𝑖 , and 𝐾 is the total number of segments. The distance 𝑑 (·) is
calculated by the sum of the absolute values of the delta between
all the individual elements within the two (partial) embeddings:

𝑑 (e1, e2) =
𝑛∑︁
𝑖=1

������ 𝑚∑︁𝑗=1
(
e(1)
𝑖, 𝑗

− e(2)
𝑖, 𝑗

)������ , (8)

where e1 and e2 are the two embeddings being compared, while
𝑛 ×𝑚 represents the total dimensionality of the embedding. As
such, the weighted distance for the target-based method is:

𝐷 (𝛿) =
𝐾∑︁
𝑘=1

W𝑘 · 𝑑
(
𝑔(xU𝑘 + 𝛿xU𝑘 ), 𝑔(xT)

)
, (9)

and that of the threshold-based method follows a similar formula.
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Figure 3: The equal-soundness contour and imperceptibility
gain curve. The gain is calculated as the inverse linear nor-
malization of the soundness pressure levels.

Improve Imperceptibility via Frequency Penalty. The imper-
ceptibility of perturbations is a critical requirement, as we aim to
minimally impact the normal use of the audio and avoid raising
suspicion from the attacker. Existing work has primarily focused
on minimizing the 𝐿𝑝 -norm as the measurement of the perturba-
tion magnitude [8, 11, 65]. While this approach indeed restricts the
overall loudness, perturbations optimized in this manner are still
audible due to the gap between 𝐿𝑝 -norm and human perception.

To further enhance imperceptibility, we leverage the diverse
sensitivity of the human auditory system to different audio fre-
quencies [22]. This discrepancy stems from the resonance of the
ear canal and the transfer function of the ossicles in the middle ear,
making human hearing most responsive to certain frequencies [24].
Despite this, existing literature has explored more nuanced human
hearing sensitivity related to frequencies. In our study, we build
upon the equal-loudness contour [49], which is one of the most
widely acknowledged assessments of sound pressure level (SPL)
across the frequency spectrum. The raw data was collected through
psychoacoustic experiments, which capture the gain as a linear
reflection of human perception across different frequencies. We
leverage this principle to linearly map sound pressure levels from
-20 dBSPL to 80 dBSPL to imperceptibility gains ranging from 1 to
0 for different frequency bands. The original contour curve and
the corresponding frequency gain are presented in Figure 3. In our
context, a higher gain corresponds to a frequency band that is more
challenging to perceive by humans, as reflected in higher sound
pressure levels in the contour. Therefore, the perturbations in the
frequency band, when multiplied by this gain, will be preserved
to a greater extent because they are more “difficult” to perceive by
humans. Formally, the frequency penalty term is defined as follows:

Lpercept (𝛿) =
𝐾∑︁
𝑘=1

𝑊 (𝑓𝑘 ) · |𝛿 (𝑓𝑘 ) |, (10)

where 𝐾 is the number of frequency bands, 𝑓𝑘 represents the center
frequency of the 𝑘-th frequency band,𝑊 (𝑓𝑘 ) is the imperceptibility
gain function for the frequency band 𝑓𝑘 , and 𝛿 (𝑓𝑘 ) is the frequency
strength of the perturbation in the 𝑘-th frequency band.

However, this measurement only considers the perturbation it-
self and disregards the original speech context. For instance, the
same perturbations added to a loud speech sample will be less
perceptible than those added to a gentle speech. To this end, we
additionally incorporate the Signal-to-Noise Ratio (SNR) as the
complementary metric. From the perspective of human auditory
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perception, SNR is closely related to the masking effect, where the
presence of a dominant signal can conceal the perception of weaker
signals (i.e., perturbations) [6]. Moreover, it is a computationally
efficient measure that facilitates faster optimization and thus im-
proved usability. Finally, the Lidentity (𝛿), Lpercept (𝛿), and SNR are
jointly optimized to effectively deviate the speaker embeddingwhile
maintaining changes to the original audio imperceptible.

6 EXPERIMENTS AND EVALUATION
6.1 Speech Synthesis Models
To best resemble a strong attacker with advanced DeepFake tech-
niques, we focus on DNN-based speech synthesis models with
state-of-the-art zero-shot capabilities. We manually examined the
performance of the surveyed models, and five synthesizers were
chosen. These include four open-source platforms, SV2TTS [59],
YourTTS [9], TorToiSe [4], Adaptive Voice Conversion (AdaptVC) [39],
and one commercial product named ElevenLabs [18].
SV2TTS. SV2TTS [59] is a three-step voice conversion system:
LSTM-based speaker encoding [59], Tacotron 2 as synthesis net-
work [46], andWaveNet vocoder [55].We followed awell-established
implementation on GitHub [29] and used the pre-trained models.
YourTTS. YourTTS [9] is a zero-shot multi-speaker TTS system
withmultilingual capabilities, introduced in 2022. It consists of three
main components: the H/ASP model [23] as the speaker encoder, a
custom VITS-style model as the decoder, and HiFi-GAN [32] as the
vocoder. For implementation, we use the YourTTS model featured
by Coqui, a library built on the latest TTS research.
TorToiSe. TorToiSe [4] is a recent open-source project on GitHub.
Its overall architecture is inspired by OpenAI’s DALLE model. The
system is highly complex incorporating five separately-trained
large models. For instance, it applies a GPT-2 model to predict
token codes that represent highly-compressed audio data, a dif-
fusion decoder to synthesize mel-spectrograms, and a UnivNet
vocoder [28] to transform spectrograms into acoustic waveform.
Adaptive Voice Conversion. AdaptVC [39] possesses an autoen-
coder architecture with customed DNNs using instance normaliza-
tion layers. The models are trained on CSTR VCTK Corpus [62].
ElevenLabs. ElevenLabs [18] is a newly-funded commercial prod-
uct specializing in versatile AI speech technologies including TTS.
Since the release of its beta platform in 2023, it has gained significant
popularity and has even been misused in DeepFake to disseminate
misinformation and hate speech [57]. The TTS product used in our
study is a completely black-box system.

In addition, we also explored some other speech synthesis plat-
forms such as Uberduck.ai [53]. However, they were excluded from
the main study due to their relatively lower speech synthesis per-
formance or limited capabilities in enabling customized speakers.

6.2 Speech Corpus Datasets
Due to ethical considerations, we create a custom dataset using
speech audio samples from public datasets to represent the victim’s
and target’s voices. The source datasets include VCTK [62], Lib-
riSpeech [37], Speech Accent Archive (SAA) [60], and TIMIT [19].

Table 2: The attributes of the selected speech samples.

Source # Speakers
(M/F)

Age
Range Accent Average

Length

VCTK 25 (8/17) 18-38

American, Australian, Canadian,
English, Indian, Irish, NewZealand,

NorthernIrish, Scottish,
SouthAfrican, Welsh.

4.78 s

Librispeech 25 (9/16) - - 4.70 s

SAA 25 (8/17) 19-66

Albanian, Cantonese, Czech, Dutch,
English, French, Hebrew, Hindi, Italian,
Japanese, Korean, Mandarin, Polish,
Russian, Spanish, Tagalog, Taiwanese,

Turkish, Ukrainian, Vietnamese, Xiang, Xasonga.

5.74 s

TIMIT 25 (12/13) -

American
(New England, Northern, North Midland,

South Midland, Southern,
New York City, Western, Moved around)

3.11 s

VCTK. The CSTR VCTK [62] dataset comprises over 44 hours of au-
dio data produced by 109 English speakers with various accents. The
recorded phrases are sourced from diverse text materials, including
newspapers, linguistic texts, and phonetically-rich sentences.
LibriSpeech. LibriSpeech [37] is a large-scale corpus containing
approximately 1,000 hours of English speech. We use the test-clean
subset, which contains spoken phrases from 40 English speakers.
Speech Accent Archive. The SAA dataset [60] consists of a con-
sistent set of spoken phrases in English, recorded by 2140 speakers
from 177 different countries that represent 214 native languages.
TIMIT. TIMIT [19] includes audio recordings from 630 speakers
of eight major dialects of American English, with each speaker
reading ten phonetically rich sentences.

As summarized in Table 2, the speech samples were selected to
cover a comprehensive set of speech content, sample lengths, as
well as speakers with a wide range of genders, age groups, regions,
and accents. As a result, our custom dataset comprises 100 speakers,
with 25 from each source corpus, featuring five short (3-4s) to long
(6-7s) audio samples per speaker.

6.3 Speech Content of DeepFake Audio
The speech content is equally important to cause negative impacts.
As this factor has been overlooked in the past, we address this gap by
compiling a list of sentences that can be exploited using DeepFake
voices in various scenarios described in Section 4. To best simulate
real-world DeepFake threats, we sourced a portion of sentences
from Twitter instances and bank account verbal passwords [25, 58].
To obtain an appropriate set of sentences, we employed the Delphi
method as a systematic consensus-building process. Initially, each
author submitted their proposed list of sentences, with explanations
regarding potential harmfulness, contextual relevance, and possible
misuse scenarios. Subsequently, these sentences were consolidated
and subjected to three rounds of iterative refinement. The finalized
list of sentences can be found in Table 6 in the appendix, categorized
based on the malicious intent that attackers aim to convey.

6.4 Speaker Verification Systems and Setup
We focus on three speaker verification systems; two open-source
models (GMM-UBM and ivector-PLDA) and one commercial plat-
form (Microsoft Azure) with configurations detailed as follows.



AntiFake: Using Adversarial Audio to Prevent Unauthorized Speech Synthesis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

GMM-UBMand ivector-PLDA.BothGMM-UBM [40] and ivector-
PLDA [16] are speaker recognition systems widely studied in exist-
ing research [10, 61]. We used their open-source implementation
featured by Kaldi toolkit [38]. In our study, they were used to per-
form speaker verification (SV) tasks that verify whether a voice
samplematches its labeled speaker.We first enrolled all target speak-
ers from our custom dataset with their authentic speech samples,
then evaluated any arbitrary utterance against its labeled speaker
model for checking. Following existing work [61], we conducted
batch testing and adjusted the output threshold of models using the
Equal Error Rate (EER) criterion, defined as the error rate at which
a system’s false positive and false negative rates are equal. Specifi-
cally, we fine-tuned and selected the threshold while maintaining
EER, by passing a controlled group of voice samples labeled with
their real speakers in addition to our testing group. The success
rate was subsequently calculated using the updated threshold.
Microsoft Azure. Adopted by the International Standards Or-
ganization (ISO), Microsoft Azure’s cloud platform offers a com-
mercialized solution for speaker recognition tasks. Similar to the
open-source platforms, the verification process entails speakers en-
rolled with their authentic speech data, and the speaker verification
queries can be made from its API.

6.5 Experimental Methodology
Large-scale Synthesis and Target Selection. To design compre-
hensive experiments, we leverage the synthesizers, speech sam-
ples, and DeepFake content discussed previously. Specifically, we
employed an iterative process wherein each speaker was consid-
ered the source speaker (victim) and looped through each of their
utterances. The synthesis was performed using each of the five
synthesizers detailed in Section 6.1, resulting in a large-scale syn-
thesis process that produced 60,000 synthesized speech samples
(100 × 5 × 24 × 5). From this extensive collection, we identified
samples that successfully bypassed at least one speaker verification
system (Section 6.4) while maintaining high-fidelity and perceptual
similarity to the victim as assessed by human perception. As a result,
we sampled a total of 600 synthesized speech clips, with 200 samples
capable of evading authentication for each of the speaker verifica-
tion systems. These DeepFake audio samples were subsequently
employed for AntiFake processing and evaluation. For each victim
sample, we selected four target speakers distinct from the original
victim. This selection included two speakers of the same gender
as the victim and two speakers of a different gender, ensuring a
diverse and representative set of speaker combinations.
Evaluation Metrics. Our primary focus is on three metrics that
characterize the performance of AntiFake: authentication evasion
reduction rate (AERR), perceptual speaker dissimilarity (PSD), and
sound quality mean opinion score (MOS). Specifically, AERR is de-
fined as the rate at which DeepFake samples can no longer bypass
the corresponding SV system, given that all samples have already
been filtered to bypass SV without AntiFake. As such, a higher
AERR value represents a more effective system for preventing au-
thentication evasion. The PSD is assessed by humans who evaluate
the identity dissimilarity between synthesized samples and the orig-
inal victim’s speech sample. This human-rated metric is scored on

Table 3: Overall performance of the two schemes inAntiFake.

AEER PSD MOS
GMM-UBM ivector-PLDA Azure

Threshold-based 98.50% 98.75% 100% 4.85±0.33 3.44±0.61

Target-based 98.50% 99.50% 100% 4.88±0.47 3.32±0.58

a scale from 1 to 5, where 1 indicates the least dissimilar and 5 rep-
resents the most dissimilar. A higher PSD value signifies a greater
divergence from the original speaker’s voice and is therefore de-
sired in our context. The MOS score in our experiments is derived
from the well-established NISQA [35], a DNN-based speech assess-
ment system that quantifies the overall quality and naturalness of
speech on a scale from 1 to 5. This metric is used to measure the
overall audio quality of the processed victim’s sample, and there-
fore a higher value is desired. Empirically, a MOS of 3 or higher
represents relatively good speech quality. For reference, the mean
MOS for the TIMIT corpus is measured at 3.45±0.52.

6.6 Experimental Results
Overall Performance for Two Schemes. The overall perfor-
mance of the two proposed schemes is summarized in Table 3. In
terms of protection on speaker authentication systems (as measured
by AEER), we observed that the protection rates for the three SV
systems exceed 98%, demonstrating the effectiveness of AntiFake.
Among the SV systems, AEER for Azure achieved the highest at
100%, while that of the GMM-UBM exhibited a relatively lower
value. After manual examinations of these synthesized samples and
evaluation results, we found that they exhibited high PSD scores as
rated by humans (4.76±0.28), suggesting that the generated audio
clips did not resemble the original speaker’s voice. As such, we
postulate that these samples may be considered “false positives” in
SV systems, where they are mistakenly identified as originating
from the enrolled speakers due to the lack of robustness in SV tasks.

Regarding the performance comparison of the two proposed
schemes, no significant difference was observed in their protec-
tion efficacy. This can be attributed to the fact that both methods
stem from the same underlying principle: sufficiently deviating
the speaker embedding from its original value. However, the au-
dio quality of speech samples processed using the threshold-based
method appeared to be slightly better, potentially due to the larger
solution space compared to targeting a specific speaker embedding.
A more comprehensive breakdown of the results is presented in
the subsequent ablation study as baselines.
Targeted Capability and Cross-gender Analysis. Although it is
not our objective to transfer the speaker identity to another exact
speaker, we investigated how well this can be done with AntiFake.
To do so, we selected those generated with the target-based scheme
and examined the perceptual speaker identity. The results indicated
that while all of them were perceptually dissimilar to the victim’s
voice (therefore the protection is guaranteed), only 13.6% speech
samples were marked as similar to the target speaker. This signifi-
cant drop is within expectation for two reasons. First, the speaker
boundaries for different synthesizers (or encoders) can be signifi-
cantly different. As such, the targeted identity is difficult to transfer
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Table 4: Ablation studies with different combinations of encoders.

MOS AdaptVC SV2TTS YourTTS Tortoise ElevenLabs
AERR PSD AERR PSD AERR PSD AERR PSD AERR PSD

1 AdaIN 3.84±0.22 99.6% 4.82±0.31 20.4% 2.42±0.80 0% 1.63±0.24 3.2% 1.42±0.20 0% 1.20±0.20
2 GE2E 3.77±0.37 4.8% 1.30±0.20 100% 4.88±0.45 1.2% 1.1±0.18 20.6% 2.78±0.91 16.8% 1.25±0.56
3 H/ASP 3.80±0.20 5.6% 1.64±0.33 0% 1.20±0.20 100% 4.84±0.32 0% 1.45±0.39 13.6% 2.34±0.49
4 ViT 3.74±0.27 3.2% 1.34±0.21 1.2% 1.30±0.10 0% 1.48±0.37 100% 4.31±0.29 8.6% 2.34±0.24
1 + 2 3.62±0.33 100% 4.21±0.35 99.8% 4.33±0.48 3.6% 1.74±0.38 36.8% 3.21±0.49 88.6% 4.11±0.59
2 + 4 3.57±0.43 13.6$ 2.01±0.46 100% 4.83±0.55 8.6% 1.96±0.28 79.8% 3.98±0.61 84.8% 3.78±0.66

1 + 2 + 3 3.46±0.34 100% 4.67±0.44 99.8% 4.22±0.57 100% 4.39±0.52 24.6% 2.28±0.45 90.6% 4.26±0.36
2 + 3 + 4 3.50±0.46 74.8% 3.88±0.62 100% 4.63±0.29 100% 4.16±0.22 98.6% 4.40±0.37 92.0% 4.40±0.30

1 + 2 + 3 + 4 3.37±0.60 99.4% 4.80±0.25 100% 4.89±0.42 99.8% 4.90±0.39 99.2% 4.73±0.36 97.7% 4.84±0.44

to unknown models. Second, our optimization strategy is designed
to prioritize embedding deviation from the original one. Therefore,
its ability to reach the target embedding is limited by design. We
intentionally did this since strictly targeting a speaker embedding
will significantly shrink the solution space, which however, may
not be the optimal point that balances embedding deviation and per-
turbation magnitude. In cases where identity-targeting capabilities
are desired, an additional penalty term can be added to restrict the
discrepancies between optimized embedding and target embedding.

While the identity-targeting capability is limited by our design,
it was interesting to find that the cross-gender success rate was
as high as 82.4%. This means that, when the target is selected to
be of a different gender than the victim, 82.4% synthesized speech
goes to the gender of the target speaker. Such a high rate is not
a coincidence; and we believe this is because even though the
speaker boundaries for individual identities can be significantly
different for various models, the acoustic features that characterize
gender share more similarities across models [56]. As such, during
the optimization towards the speaker of a different gender, those
fundamental features are unavoidably altered and therefore lead to
a high cross-gender success rate. From the perspective of protection,
such phenomenon benefits AntiFake in that, when the synthesized
audio is less likely to share the same gender as the victim, it becomes
easier for victims to discern DeepFake speech since humans are
more sensitive to distinguish speakers with different genders [21].
Run Time Analysis. In our experimental setup, we configured
1000 iterations of automatic optimization with the predetermined
source and target speech samples. On average, the complete opti-
mization process took 197.4 seconds to execute using an NVIDIA
RTX 3090 GPU. Given the relatively short runtime, we regard An-
tiFake as a computationally efficient system that enhances usability.

6.7 Ablation Study
Impacts of Combining Different Encoders. In the previous ex-
periments, we ensembled four speaker encoders to ensure robust
protection against different models. To further investigate transfer-
ability across encoders, we analyzed the performance of various
encoder combinations. The results are summarized in Table 4.

Overall, we found that the protection effectiveness (reflected
in AEER and PSD) generally grows when the number of encoders
increases. The protection reaches its best when all four encoders are
combined for optimization. This is because the protection strength
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Figure 4: Measured AEER and MOS with varying thresholds.

is ultimately determined by the perturbations that can disrupt
transferable acoustic features. When more feature extractors are
employed, the extracted features will become more comprehen-
sive across model architectures. This principle also explains why
the transferability to commercial ElevenLabs is significantly lower
when using individual encoders only. In this way, the optimization
is equal to conducting a targeted adversarial attack against indi-
vidual synthesizers as is done in [26], which is insufficient to form
protection against unknown attacker models. Besides, we found
that the length of the embedding does not explicitly affect the per-
formance. This is because a longer embedding does not necessarily
cover more comprehensive features that characterize the speaker’s
identity. Another observation is that the original quality generally
degrades when ensembling more encoders. An intuition is that
when combining more encoders to form a comprehensive set of
acoustic features, it often requires more perturbations to sufficiently
disrupt them, leading to relatively lower audio quality.
Impacts of Thresholds. We also studied how different thresholds
can affect AntiFake in the threshold-based strategy, with results
shown in Figure 4. We observed that when the threshold grows,
the protection (AEER) increases since the optimization enforces a
larger embedding deviation. As a side effect, however, the audio
quality drops dramatically since it requires more perturbations.
Voice Features. AntiFake is built upon speaker embeddings to
maximize protection. While such embeddings achieve state-of-the-
art performance in extracting speaker features, they are latent space
representations and are non-interpretable by nature. As such, we
take a step further to understand the important voice features that
need to be emphasized when developing protection. Specifically,
we focused on four well-established features in the field of speaker
recognition: Mel Frequency Cepstral Coefficient (MFCC) [51], Lin-
ear Frequency Cepstral Coefficient (LFCC) [68], Linear Predictive
Coding (LPC) [52], and line spectral frequency (LSF) [31].
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Table 5: Mean deviation factor of voice features.

1 AdaIN 2 GE2E 3 H/ASP 4 ViT Ensemble
MFCC 0.82 0.28 0.12 0.21 0.23
LFCC 0.55 1.28 0.66 3.24 0.83
LPC 0.28 0.65 1.63 6.33 1.22
LSF 0.46 0.17 0.37 0.28 0.20

The samples generated by AntiFake in previous experiments
were utilized in this experiment. For each sample, we extracted
the perturbations from the adversarial example (xU + 𝛿xU ) and
original sample xU. The perturbations were then disrupted in terms
of sequence order while their magnitudes were kept unchanged. In
this way, we constructed control samples x∗U that were not protected
but carried comparable noises. Subsequently, the aforementioned
four features were extracted from both adversarial and control
samples, denoted as 𝑓𝑎𝑑𝑣 and 𝑓𝑐𝑡𝑟𝑙 respectively. Intuitively, features
that aid in protection will exhibit different values between these
two sets. Based on this insight, we calculated the feature deviation
factor as:

Factor =
���� (𝑓𝑎𝑑𝑣 − 𝑓𝑈 ) − (𝑓𝑐𝑡𝑟𝑙 − 𝑓𝑈 )

𝑓𝑐𝑡𝑟𝑙 − 𝑓𝑈

���� , (11)

where 𝑓𝑈 is the feature extracted from the original speech xU. As
such, a higher value of this factor indicates a stronger correlation
between the feature and protection.

This experiment was conducted on both individual encoders and
their ensemble, with results summarized in Table 5. We observed
that these encoders were associated with different features. For in-
stance, the GE2E encoder manifested close relationships with LFCC
features, while the ViT encoder mainly aligned with LPC features.
Overall, the LPC features achieved the highest values across various
encoders, indicating its potential to serve as a critical feature for
protection. On the other hand, however, we did not identify any
voice feature that was generalizable across all encoders. As such,
explicitly focusing on specific voice features might only yield sub-
optimal protection, highlighting the gap between voice features and
speaker embeddings. While only the four most important voice fea-
tures were examined, this insight could inspire future work aimed
at exploring other features and their optimal combination toward
improved protection.

6.8 Evaluation against Adaptive Attackers
We also evaluated AntiFake in the context of adaptive attackers. In
this scenario, attackers aware of the existence of perturbations will
attempt to remove them and proceed with synthesis with sanitized
speech audio. We consider two categories of strategies, where the
attacker may (1) employ a set of transformation operations to invali-
date perturbations, or (2) use optimization to remove perturbations.
Speech Sample Transformation. For evaluation, we followWave-
Guard [27] which is a recent work proposed to undermine ad-
versarial perturbations via signal processing techniques. Specifi-
cally, we implemented four audio transformations: (1) quantization-
dequantization, (2) down-sampling and up-sampling, (3) frequency
filtering, and (4) mel-spectrogram extraction and inversion. We fol-
lowed the same setup as the original implementation and used an
identical set of parameters to ensure consistency with prior work
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Figure 5: AntiFake performance against adaptive attackers
with transformation-based strategies.

and transparent comparison. The transformations are summarized
as follows, and for more details, we refer to the original paper [27].
Quantization-Dequantization. We quantized the waveform audio
into 8 bits and reconstructed it to approximate the original data.
Down-sampling and Up-sampling. We downsampled the original
waveform (16 kHz) to lower frequencies (12kHz, 10kHz, and 8kHz)
that are suggested to be the most optimal defensive sampling rates,
and upsampled it via interpolation back to the original sample rate.
Frequency Filtering. Frequency filtering attenuates the signal above
and below certain thresholds with high/low-shelf filters. In our ex-
periment, we first computed the spectral centroid of each waveform,
then applied a negative gain of 30 on the amplitude of frequencies
above 1.5 times the centroid and below 0.1 times the centroid.
Mel-spectrogram Extraction and Inversion. The sample was con-
verted to mel-spectrogram and then converted back to waveform.
Optimization-based Perturbation Removal. As perturbations
are optimized in AntiFake, the attacker can also adopt a similar
strategy to remove them. However, due to the lack of the original
speaker embedding, the attacker is not able to follow the same
optimization process (Section 5.4) to reconstruct the original speech
directly. Therefore, the attacker has to rely on SVmodels or humans
to determine the optimization direction and the convergence state.
Two types of adversarial feedback are incorporated: (1) the speech
quality that needs to be maximized (i.e., minimize distortions), and
(2) the extent to which the DeepFake audio can pass SV systems
(measured by SV outputs) or deceive humans (quantified as PSD).

For evaluation, the MOS score paired with human perception
was used to assess speech quality. The attacker is also involved in
using human perception to rate the PSD score judging the effective-
ness of DeepFake samples in deceiving humans. The ivector-PLDA
was selected as the target SV system, and it was set up in two con-
figurations: one with the confidence score exposed to the attacker
while the other does not, and the score was termed to be maxi-
mized. Due to the attacker’s realistic inability to access gradients
within target SV systems and the non-differentiable nature of the
human feedback involved, we built upon a search-based optimiza-
tion framework [50]. Considering the significant computational
costs and manual labor, 100 samples were used in this experiment.
Evaluation Results. The results for the transformation-based ap-
proach are summarized in Figure 5. Overall, the protection remains
relatively robust for two reasons. First, the perturbations are not
entirely removed after processing. The defensive nature of such
transformations necessitates restoring the original waveform with
minimal harm to the audio quality. However, our optimization
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driven by psychoacoustic principles closely ties the perturbations
to the speech waveform. As such, it becomes difficult for processing
techniques to eliminate perturbations without significantly harm-
ing the audio. Second, our perturbations are optimized specifically
for disrupting features that characterize speaker embeddings. While
the full set can guarantee high performance, those that persist after
processing can still shift the speaker embedding. This is a funda-
mental difference from traditional adversarial audio where the per-
turbations are designed to reach targeted phrases or classification
labels, and the narrow solution space renders their perturbations
relatively “fragile” to be broken by transformations.

Among the four transformations, we found that frequency filter-
ing degraded the AntiFake protection the most, due to the fact the
employed filters removed more perturbations compared to other
transformations. However, upon manual hearing on the resulting
speech samples derived from frequency filtering, we found the
speech content suffers non-trivial alternation. This further facili-
tates that the synthesized audio sounds blurred and unnatural to
humans, and simultaneously none of them can pass the authenti-
cation systems. In this context, the DeepFake audio is less likely
to cause harm. To sum up, this reflects a fundamental trade-off on
the attacker side, where stronger filtering can break the protection
provided by AntiFake, yet the significantly undermined audio will
result in low-quality DeepFake detrimental to the malicious goals.

On the other hand, the optimization-based approach exhibited
different challenges. Even with the confidence score exposed to
the attacker, we found that only three DeepFake samples passed
the SV system, and their number of iterations needed were 8615,
7967, and 9034, respectively. Besides, six samples attained a PSD of
higher than 3. Other than that, the rest optimization trials failed
after reaching the 10K iteration limit. When the confidence score is
not accessible, only two samples achieved a PSD higher than 3 and
none of the resulting DeepFake speech can bypass the SV system
within the query limit. This is because without the score, the query
feedback is merely a binary of either “Accept” or “Reject”, render-
ing the optimization much less effective. These results showed the
feasibility of creating usable DeepFake samples by using adaptive
optimization. While only a small number of samples achieved the
adversarial goal, it does not imply the attack is less powerful. Con-
versely, this strategy provides finer-grained attack capabilities, and
the perturbations could always be found given unlimited queries.
In practical scenarios, however, the large number of queries poses
significant barriers for the attacker in terms of both computation
and human efforts. At the later stage of optimization, we found that
human-rated terms could sometimes contradict the values when
rated normally. This could be attributed to the so-called semantic
satiation, where repeated listening queries might cause cognitive
degradation. These results also provide valuable insights for defen-
sive measures, which are discussed further in Section 7.

6.9 AntiFake Usability Test
A key objective of AntiFake is to make protection accessible to
the public, for which reason usability is a crucial desired property.
Therefore, we also conducted usability tests followed by surveys
to evaluate practical usage. The experiments and surveys involved
were approved by the local Institutional Review Board (IRB).

Participants Recruitment.Wefirst surveyed a larger group of vol-
unteers for demographic information and subsequently sampled a
total of 24 participants. The participant group consisted of 13 (54.2%)
males and 11 (45.8%) females; 15 (62.5%) aged 18-29, 5 (20.8%) aged
30-50, and 4 (16.7%) aged over 50. Regarding educational levels, we
selected participants to be evenly distributed across four categories:
“no high school diploma or equivalent,” “high school diploma or
equivalent,” “college degree,” and “graduate or professional degree.”
As such, we aimed to recruit participants with diverse backgrounds
to form a representative population of AntiFake users.
Usability Test Methodology. We provided each participant with
a set of source speech samples and asked them to follow the instruc-
tions of AntiFake. During each round of experiment, they were
tasked to transcribe the processed sample before listening to the
original speech. Participants were given unlimited time and attempt
to experience the system. Upon completing the experiments, they
were asked to fill out a survey incorporating the standard System
Usability Scale (SUS) questionnaire, assess the speech quality of the
protected samples, and provide open-ended feedback. In terms of
speech quality assessment, the transcription correctness was ana-
lyzed to serve as an indicator of speech clarity and quality. Besides,
the participants were asked to rate an integer score from 1 to 5,
with 1 representing the worst and 5 indicating the best quality. To
mitigate desirability bias, the research goal was hidden from the
participants. The complete survey can be found in Appendix A.
Usability Test Results. The SUS scores for individual responses
were calculated, yielding an average of 87.60 (±4.81) across all re-
sponses. In reference to the SUS curve and percentile ranks [41],
AntiFake achieved an above-average SUS score of 68 at 50% per-
centile. Besides, the human-perceived speech quality scores were
averaged at 3.54 ± 0.59. This result aligns with our measured MOS
scores calculated by the NISQA model, highlighting the relatively
good speech quality of the processed samples. We also manually
verified the transcriptions from the participants, and found that
all of them aligned with ground-truth contents. As such, it pro-
vides evidence that the protective processing of AntiFake preserves
the original speech quality and does not compromise the normal
human comprehension of these samples.

Regarding the open-ended feedback, the majority of participants
(n=17, 70.8%) expressed amazement at the superior performance of
speech synthesizers and agreed that preventative measures should
be in place for mitigation. Many of them (n=8, 33.3%) characterized
the system as “easy to use”. Some participants (n=4, 16.7%) ex-
pressed a desire for features enabling simplified user involvement,
suggesting a “one-click functionality” for immediate output.

7 DISCUSSION AND LIMITATIONS
Real-world Limitations. The effectiveness of AntiFake is depen-
dent on users consistently applying it to their audio before public
release. In reality, however, users may not always have control
over all instances of their voice recordings. While it might not be
easy for the attacker to link samples to the target individual, such
unprocessed samples could create opportunities for attackers to
undermine the protection. To enhance overall security, it is bet-
ter for users to adopt a multi-faceted approach to safeguard their
online speech data. This could include careful curation of their
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digital presence, untagging or removing themselves from publicly
accessible recordings, and taking advantage of privacy regulations
to limit the availability of their voice samples online.

On the other hand, AntiFake’s protection could be compromised
by future techniques, which is known as the challenge of being
future-proof [43]. For instance, imminent synthesizers might not
use speaker embeddings, or advanced audio purification techniques
might emerge to remove perturbations even without any prior
knowledge of the original speaker or samples. This further high-
lights the need for continued research into proactive privacy protec-
tion strategies, especially with an emphasis on sustained protection.
Overlapped Encoders. The encoders of the evaluated open-source
synthesizers are overlapped with those integrated within AntiFake.
However, this does not undermine our black-box settings. The
key insight of AntiFake is that encoder is a general architecture
within synthesizers and shares similarities due to their common
goal of robust embedding extraction. Therefore, AntiFake relies
on transferability to disrupt black-box synthesizers of attackers.
We experimentally validated this point from two aspects. First, An-
tiFake was evaluated against the commercial ElevenLabs, which
is a pure black-box system employing unknown encoders. With
our designed encoder ensemble, AntiFake was shown to provide
robust protection. Second, we further delved into the impacts of en-
coders with a fine-grained ablation study. As suggested by Table 4,
different levels of transferability exist even when entirely different
encoders were used for optimization and synthesis. Besides, the in-
creased number of ensembled encoders generally led to augmented
protection, and leveraging the complete set of the four encoders
achieved the best protection even against black-box products. We
believe such an initial clue of transferability is a crucial insight
that can inspire future studies, which can further investigate the
optimal combination across a wide range of encoders.
Adaptive Attackers. In this study, we also considered adaptive
attackers leveraging speech transformation and optimization-based
perturbation removal as two key strategies. Through the experi-
ments, they exhibited different characteristics. For the transformation-
based approach, we found that certain processing methods (e.g.,
filtering) can indeed degrade the protection, however, the strong
filtering also undermines the speech sample and therefore leads
to low-quality DeepFake samples. As such, it is a trade-off that
the attacker has to make between the fidelity of DeepFake speech
and the strength to remove perturbations. On the other hand, the
optimization-based method provides finer-grained capabilities to
find the perturbations; however, it requires a large number of
queries to SV models or humans that cause significant yet realistic
barriers for the attacker. Inspired by these results, some measures
could be taken to counteract such adaptive attackers. For example,
targeting the large number of queries needed, rate-limiting the
queries to SV systems or capping unsuccessful attempts could be
leveraged to mitigate threats. Moreover, removing the user’s access
to confidence scores could further hinder the attacker’s attempts.
Multiple and Longer Samples. In practical scenarios, the user
may seek to use AntiFake to protect longer or evenmultiple samples.
AntiFake is not principally limited by the sample length. This is
because samples with different lengths are mapped to fixed-length
speaker embeddings. Therefore, the protection level determined

by the embedding deviation is not affected by audio lengths. Fur-
thermore, multiple speech samples can be batch-processed with
one target embedding. While such samples may expose more infor-
mation to the attacker, the consistent embedding of the targeted
persona ensures that the advantage given to the attacker is limited.

This naturally leads to the question of how much protection is
sufficient. There are two factors, the amount of perturbations and
the costs of removing them. For perturbation, there is a delicate
balance between protection strength and sample quality. The more
perturbations, the harder it is to reverse, but likely worse quality.
Furthermore, perturbation magnitude is closely associated with the
acceptable risk and attacker cost. Such costs include both human
capital and computational resources, as revealed in the study against
adaptive attackers. For countermeasures, traditional security tech-
niques like rate limiting can further improve the asymmetry.
Desirability Bias. In designing the human studies and associ-
ated surveys, we have taken measures to minimize ambiguity and
communication inefficiency. For example, rather than requiring
participants to comprehend technical terms such as “adversarial
examples” and intricate internal workings, we designed end-to-end
human evaluation of AntiFake as a system. Additionally, we made
efforts to mitigate desirability bias by incorporating both positive
and negative questions in the survey and hiding the study goal
from the participants. Despite these efforts, however, unobserved
desirability bias from the researcher’s perspective may still persist.
For instance, participants might deduce that they are evaluating
the efficacy of a novel tool developed by researchers. As a result,
some participants might be more likely to provide positive feedback
which they believe is advantageous and appealing to the researcher.
Ethical Considerations.We care deeply about the security of our
society and have strived to address the potential ethical consider-
ations associated with our work. First, all of the aforementioned
user studies strictly follow the protocols approved by the local IRB.
Throughout the process, the participants were made aware that
the information conveyed within the speech samples was not real
and not representative of actual events or individuals. Second, all
generated DeepFake speech samples, particularly those exhibiting
high levels of realism sufficient to bypass authentication systems
and deceive human perception, are not used outside of the study
and have been deprecated following the conclusion of the research.

8 CONCLUSION
In this work, we propose AntiFake, a preventative defense against
DeepFake audio threats. complementary to existing detection meth-
ods, AntiFake leverages adversarial perturbations to hinder unau-
thorized speech synthesis. To improve usability and accessibility to
diverse populations, AntiFake is designed as a human-in-the-loop
system involving minimal human efforts. The efficacy of AntiFake
is evaluated with state-of-the-art synthesizers, and the usability is
validated with usability tests involving human participants.

ACKNOWLEDGMENT
We thank the reviewers for their valuable feedback. This work is
supported in part by the NSF (CNS-1916926, CNS-2038995, CNS-
2154930, CNS-2238635), and ARO (W911NF2010141).



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhiyuan Yu, Shixuan Zhai, & Ning Zhang

REFERENCES
[1] Hadi Abdullah et al. 2019. Practical Hidden Voice Attacks against Speech and

Speaker Recognition Systems. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.

[2] Hadi Abdullah et al. 2021. Hear “No Eil", See “Kenansville"*: Efficient and trans-
ferable black-box attacks on speech recognition and voice identification systems.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 712–729.

[3] Muhammad Ejaz Ahmed et al. 2020. Void: A fast and light voice liveness detection
system. In 29th USENIX Security Symposium (USENIX Security 20). 2685–2702.

[4] James Betker. 2022. TorToiSe TTS. https://github.com/neonbjb/tortoise-tts.
[5] Logan Blue et al. 2022. Who Are You (I Really Wanna Know)? Detecting Au-

dio DeepFakes Through Vocal Tract Reconstruction. In 31st USENIX Security
Symposium, USENIX Security 2022. USENIX Association, 2691–2708.

[6] Douglas S. Brungart. 2001. Informational and energetic masking effects in the
perception of two simultaneous talkers. The Journal of the Acoustical Society of
America 109, 3 (03 2001), 1101–1109.

[7] Nicholas Carlini et al. 2016. Hidden voice commands. In 25th USENIX Security
Symposium (USENIX Security 16). 513–530.

[8] Nicholas Carlini et al. 2018. Audio adversarial examples: Targeted attacks on
speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 1–7.

[9] Edresson Casanova et al. 2022. Yourtts: Towards zero-shot multi-speaker tts and
zero-shot voice conversion for everyone. In International Conference on Machine
Learning. PMLR, 2709–2720.

[10] Guangke Chen et al. 2021. Who is real bob? adversarial attacks on speaker
recognition systems. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE.

[11] Tao Chen et al. 2020. Metamorph: Injecting Inaudible Commands into Over-the-
air Voice Controlled Systems. In 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.

[12] Valeriia Cherepanova et al. 2021. LowKey: Leveraging Adversarial Attacks to Pro-
tect Social Media Users from Facial Recognition. In 9th International Conference
on Learning Representations, ICLR 2021, Austria, May 3-7, 2021.

[13] Ju-Chieh Chou et al. 2019. One-Shot Voice Conversion by Separating Speaker and
Content Representations with Instance Normalization. In 20th Annual Conference
of the International Speech Communication Association. ISCA, 664–668.

[14] Graham Cluley. 2022. Deepfaking crooks seek remote-working jobs to gain access
to sensitive data. https://grahamcluley.com/deepfaking-crooks-seek-remote-
working-jobs-to-gain-access-to-sensitive-data/.

[15] Joseph Cox. 2023. How I Broke Into a Bank Account With an AI-
Generated Voice. https://www.vice.com/en/article/dy7axa/how-i-broke-into-a-
bank-account-with-an-ai-generated-voice.

[16] Najim Dehak et al. 2010. Front-end factor analysis for speaker verification. IEEE
Transactions on Audio, Speech, and Language Processing 19, 4 (2010), 788–798.

[17] Alexey Dosovitskiy et al. 2021. An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

[18] ElevenLabs. 2023. Prime Voice AI. https://beta.elevenlabs.io/.
[19] John S Garofolo et al. 1993. DARPA TIMIT acoustic-phonetic continous speech

corpus CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon technical report (1993).
[20] Ian J. Goodfellow et al. 2015. Explaining and Harnessing Adversarial Examples.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings.

[21] Antonio Guerrieri et al. 2022. Gender identification in a two-level hierarchical
speech emotion recognition system for an Italian Social Robot. Sensors 22, 5
(2022), 1714.

[22] Hanqing Guo et al. 2022. Specpatch: Human-in-the-loop adversarial audio spec-
trogram patch attack on speech recognition. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1353–1366.

[23] Hee Soo Heo et al. 2020. Clova baseline system for the voxceleb speaker recogni-
tion challenge 2020. arXiv preprint arXiv:2009.14153 (2020).

[24] Kenji Homma et al. 2009. Ossicular resonance modes of the human middle ear
for bone and air conduction. The Journal of the Acoustical Society of America 125,
2 (2009), 968–979.

[25] HSBC. 2016. How do I sign up for Voice ID? https://www.hsbc.co.uk/ways-to-
bank/phone-banking/.

[26] Chien-yu Huang et al. 2021. Defending your voice: Adversarial attack on voice
conversion. In 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE.

[27] Shehzeen Hussain et al. 2021. {WaveGuard}: Understanding and Mitigating
Audio Adversarial Examples. In 30th USENIX Security Symposium, 2021.

[28] Won Jang et al. 2021. UnivNet: A Neural Vocoder with Multi-Resolution Spectro-
gram Discriminators for High-Fidelity Waveform Generation. In Interspeech 2021,
22nd Annual Conference of the International Speech Communication Association.

[29] Corentin Jemine. 2019. Real-time-voice-cloning. https://github.com/CorentinJ/
Real-Time-Voice-Cloning. University of Liége, Liége, Belgium (2019).

[30] Ye Jia et al. 2018. Transfer Learning from Speaker Verification to Multispeaker
Text-To-Speech Synthesis. In Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018. 4485–4495.

[31] Tomi Kinnunen et al. 2010. An overview of text-independent speaker recognition:
From features to supervectors. Speech communication 52, 1 (2010).

[32] Jungil Kong et al. 2020. Hifi-gan: Generative adversarial networks for efficient
and high fidelity speech synthesis. Advances in Neural Information Processing
Systems 33 (2020), 17022–17033.

[33] Felix Kreuk et al. 2018. Fooling end-to-end speaker verification with adversarial
examples. In 2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 1962–1966.

[34] Zhuohang Li et al. 2020. Practical adversarial attacks against speaker recognition
systems. In Proceedings of the 21st international workshop on mobile computing
systems and applications.

[35] Gabriel Mittag et al. 2021. NISQA: A Deep CNN-Self-Attention Model for Multidi-
mensional Speech Quality Prediction with Crowdsourced Datasets. In Interspeech
2021, 22nd Annual Conference of the International Speech Communication Associa-
tion. ISCA, 2127–2131.

[36] Yishuang Ning et al. 2019. A Review of Deep Learning Based Speech Synthesis.
Applied Sciences 9, 19 (2019).

[37] Vassil Panayotov et al. 2015. Librispeech: an asr corpus based on public domain
audio books. In 2015 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE.

[38] Daniel Povey et al. 2011. The Kaldi speech recognition toolkit. In IEEE 2011 work-
shop on automatic speech recognition and understanding. IEEE Signal Processing
Society.

[39] Kaizhi Qian et al. 2019. Autovc: Zero-shot voice style transfer with only autoen-
coder loss. In International Conference on Machine Learning. PMLR, 5210–5219.

[40] Douglas A Reynolds et al. 2000. Speaker verification using adapted Gaussian
mixture models. Digital signal processing 10, 1-3 (2000), 19–41.

[41] Jeff Sauro et al. 2016. Quantifying the user experience: Practical statistics for user
research. Morgan Kaufmann.

[42] Lea Schönherr et al. 2019. Adversarial Attacks Against Automatic Speech Recog-
nition Systems via Psychoacoustic Hiding. In 26th Annual Network and Distributed
System Security Symposium (NDSS).

[43] Shawn Shan et al. 2020. Fawkes: Protecting Privacy against Unauthorized Deep
Learning Models. In 29th USENIX Security Symposium, USENIX Security 2020.

[44] Shawn Shan et al. 2023. Glaze: Protecting Artists from Style Mimicry by Text-to-
Image Models. In 32nd USENIX Security Symposium (USENIX Security 23).

[45] Jiacheng Shang et al. 2018. Defending against voice spoofing: A robust software-
based liveness detection system. In 2018 IEEE 15th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS). IEEE, 28–36.

[46] Jonathan Shen et al. 2018. Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions. In 2018 IEEE international conference on acoustics, speech
and signal processing (ICASSP). IEEE, 4779–4783.

[47] Sayaka Shiota et al. 2015. Voice liveness detection algorithms based on pop noise
caused by human breath for automatic speaker verification. In Sixteenth annual
conference of the international speech communication association.

[48] Catherine Stupp. 2019. Fraudsters Used AI to Mimic CEO’s Voice in Unusual
Cybercrime Case. https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-
ceos-voice-in-unusual-cybercrime-case-11567157402.

[49] Yôiti Suzuki et al. 2004. Equal-loudness-level contours for pure tones. The Journal
of the Acoustical Society of America 116, 2 (08 2004).

[50] Rohan Taori et al. 2019. Targeted adversarial examples for black box audio
systems. In 2019 IEEE security and privacy workshops (SPW). IEEE, 15–20.

[51] Vibha Tiwari. 2010. MFCC and its applications in speaker recognition. Interna-
tional journal on emerging technologies 1, 1 (2010), 19–22.

[52] Satyam P Todkar et al. 2018. Speaker recognition techniques: A review. In 2018
3rd International Conference for Convergence in Technology (I2CT). IEEE, 1–5.

[53] Uberduck. 2023. Text to Voice. https://app.uberduck.ai/voice-to-voice. (2023).
[54] Omkarprasad S Vaidya et al. 2006. Analytic hierarchy process: An overview of

applications. European Journal of operational research 169, 1 (2006), 1–29.
[55] Aäron van den Oord et al. 2016. WaveNet: A Generative Model for Raw Audio.

In The 9th ISCA Speech Synthesis Workshop, September 2016. ISCA, 125.
[56] Rivarol Vergin et al. 1996. Robust gender-dependent acoustic-phonetic modelling

in continuous speech recognition based on a new automatic male/female clas-
sification. In Proceeding of Fourth International Conference on Spoken Language
Processing. ICSLP’96, Vol. 2. IEEE.

[57] James Vincent. 2023. 4chan users embrace AI voice clone tool to generate
celebrity hatespeech. https://www.theverge.com/2023/1/31/23579289/ai-voice-
clone-deepfake-abuse-4chan-elevenlabs.

[58] Tarun Wadhwa. 2015. Wells Fargo Wants To Let You Make Million-Dollar
Wire Transactions With Your Face And Voice. https://www.forbes.com/sites/
tarunwadhwa/2015/11/03/why-wells-fargo-wants-to-let-you-make-million-
dollar-wire-transactions-with-your-face-and-voice/.

[59] Li Wan et al. 2018. Generalized End-to-End Loss for Speaker Verification. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2018, April 2018. IEEE, 4879–4883.

[60] Steven HWeinberger et al. 2011. The Speech Accent Archive: towards a typology
of English accents. In Corpus-based studies in language use, language learning,
and language documentation. Brill, 265–281.

[61] Emily Wenger et al. 2021. Hello, It’s Me: Deep Learning-based Speech Synthesis
Attacks in the Real World. In Proceedings of the 2021 ACM SIGSAC Conference on

https://github.com/neonbjb/tortoise-tts
https://grahamcluley.com/deepfaking-crooks-seek-remote-working-jobs-to-gain-access-to-sensitive-data/
https://grahamcluley.com/deepfaking-crooks-seek-remote-working-jobs-to-gain-access-to-sensitive-data/
https://www.vice.com/en/article/dy7axa/how-i-broke-into-a-bank-account-with-an-ai-generated-voice
https://www.vice.com/en/article/dy7axa/how-i-broke-into-a-bank-account-with-an-ai-generated-voice
https://beta.elevenlabs.io/
https://www.hsbc.co.uk/ways-to-bank/phone-banking/
https://www.hsbc.co.uk/ways-to-bank/phone-banking/
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://github.com/CorentinJ/Real-Time-Voice-Cloning
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402
https://app.uberduck.ai/voice-to-voice
https://www.theverge.com/2023/1/31/23579289/ai-voice-clone-deepfake-abuse-4chan-elevenlabs
https://www.theverge.com/2023/1/31/23579289/ai-voice-clone-deepfake-abuse-4chan-elevenlabs
https://www.forbes.com/sites/tarunwadhwa/2015/11/03/why-wells-fargo-wants-to-let-you-make-million-dollar-wire-transactions-with-your-face-and-voice/
https://www.forbes.com/sites/tarunwadhwa/2015/11/03/why-wells-fargo-wants-to-let-you-make-million-dollar-wire-transactions-with-your-face-and-voice/
https://www.forbes.com/sites/tarunwadhwa/2015/11/03/why-wells-fargo-wants-to-let-you-make-million-dollar-wire-transactions-with-your-face-and-voice/


AntiFake: Using Adversarial Audio to Prevent Unauthorized Speech Synthesis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Computer and Communications Security. 235–251.
[62] Junichi Yamagishi et al. 2019. CSTR VCTK Corpus: English multi-speaker corpus

for CSTR voice cloning toolkit. University of Edinburgh. The Centre for Speech
Technology Research (CSTR) (2019).

[63] Zhiyuan Yu et al. 2021. Security and privacy in the emerging cyber-physical world:
A survey. IEEE Communications Surveys & Tutorials 23, 3 (2021), 1879–1919.

[64] Zhiyuan Yu et al. 2023. {SMACK}: Semantically Meaningful Adversarial Audio
Attack. In 32nd USENIX Security Symposium (USENIX Security 23). 3799–3816.

[65] Xuejing Yuan et al. 2018. Commandersong: A systematic approach for practi-
cal adversarial voice recognition. In 27th USENIX Security Symposium (USENIX
Security 18). 49–64.

[66] Anna Zhadan. 2023. Emma Watson reads Mein Kampf while Biden announces
invasion of Russia in latest AI voice clone abuse. https://cybernews.com/news/ai-
voice-clone-misuse/.

[67] Linghan Zhang et al. 2017. Hearing your voice is not enough: An articulatory
gesture based liveness detection for voice authentication. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. 57–71.

[68] Xinhui Zhou et al. 2011. Linear versus mel frequency cepstral coefficients for
speaker recognition. In 2011 IEEE workshop on automatic speech recognition &
understanding. IEEE, 559–564.

A SURVEY QUESTIONS FOR USABILITY TEST
(1) What is your age group?

• 18-29
• 30-50
• Over 50

(2) What is your gender?
• Male
• Female
• Prefer not to say

(3) What is your highest level of education?
• No high school diploma or equivalent

• High school diploma or equivalent (e.g., GED)
• College degree (e.g., associate or bachelor’s degree)
• Graduate or professional degree (e.g., MS, PhD, MD, JD)

(4) I think that I would like to use this system frequently.
(5) I found the system unnecessarily complex.
(6) I thought the system was easy to use.
(7) I think that I would need the support of a technical person

to be able to use this system.
(8) I found the various functions in this system were well inte-

grated.
(9) I thought there was too much inconsistency in this system.
(10) I would imagine that most people would learn to use this

system very quickly.
(11) I found the system very cumbersome to use.
(12) I felt very confident using the system.
(13) I needed to learn a lot of things before I could get going with

this system.
(14) Please provide your perceived transcriptions of the processed

speech samples in the following.
(15) On a scale from 1 to 5, please rate your perception of the

audio quality of the processed speech samples. Note that 1
represents the worst quality while 5 indicates the best.

(16) Please share your thoughts on any aspects of AntiFake, in-
cluding its advantages, disadvantages, or any other obser-
vations. Feel free to comment on its performance, usability,
and any suggestions for improvement.

Table 6: Sentences that carry various malicious intents when used for DeepFake speech synthesis.

Malicious Intents Sentences

Conduct Financial Scam

I need money for an emergent surgery, please transfer me a thousand dollars.
I need a grand for an emergency medical bill.
I’m in trouble in a foreign country, can you lend me some money?
I need a hundred for a last minute flight. Can you help me out?
I lost my wallet, can you lend me a hundred?
You still owe me a thousand dollars, can you send it to my new account?
Your payment did not work, can you try again to my new account?

Compromise Safety and Privacy

I have arrived at your house, please open the door.
Help me recall my cell phone password.
I highly recommend you install this free software.
I have sent you the contract, please click the link to sign.
Please forward me the 2FA code for account login.
I forgot my SSN number, can you send it to me?

Spread Hate speech or Misinformation

There has been an emergency, all residents must evacuate immediately.
A magnitude 8 earthquake just hit California.
A major chemical spill happened in New York.
Cancer is caused by vaccination.
A blood test for coronavirus costs three thousand dollars.
Smoking can help prevent the coronavirus.
Cocaine is a cure for COVID 19.
I wish you were never born.

Bypass Voice-based Authentication
My voice is my password.
My bank account is secured by my voiceprint.
I confirm the transaction.

https://cybernews.com/news/ai-voice-clone-misuse/
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